
170 Scientific Journal of Maritime Research 29 (2015) 170-179 © Faculty of Maritime Studies Rijeka, 2015

Multidisciplinary
SCIENTIFIC JOURNAL OF

MARITIME RESEARCH

Multidisciplinarni
znanstveni časopis

POMORSTVO

Logistics environment awareness system prototype based on
modular Internet of Things platform
Saša Aksentijević1, David Krnjak2, Edvard Tijan3

1 Aksentijevic Forensics and Consulting Ltd, Gornji Sroki 125a, Viškovo, Croatia
2 Saipem SpA Croatian Branch, Alda Collonnella 2, Rijeka, Croatia
3 University of Rijeka, Faculty of Maritime Studies Rijeka, Studentska 2, 51000 Rijeka, Croatia, e-mail: etijan@pfri.hr

ARTICLE INFO

Preliminary communication
Received 22 November 2015
Accepted 18 December 2015

Key words:
Internet of Things
Logistics
Environment awareness system

ABSTRACT

Internet of Things (IoT) is a completely new paradigm of interconnected computing devices in the
market segment that has started emerging from 2013, while trends have been recognized in 2014 and
most predictions are related to the period until 2020. Anticipating widespread use of IoT technology
in logistics chains reported by leading sector players, a dedicated logistics testbed IoT platform
named MiOT is created and tested using Raspberry PI minicomputer, with research goal to evaluate
possibilities of integration of the logistics IoT platform inside existing Windows corporate domains.

1 Introduction

Internet of Things (IoT) is a new and upcoming para-
digm related to networking of various applicative physical
devices (“things”), as opposed to current situation where
networking refers primarily to computer and network
devices and peripherals. “Things” are embedded with
electronics, software, sensors and connectivity that en-
able them to achieve functional value and exchange data
with other devices and systems. They communicate over
Internet and cover a variety of protocols, domains and
applications.

Typical applications of IoT are various sensors or
transponders used on farms or in search and rescue
missions, automobiles with built-in sensors, biochips,
wearable computers in any form and home or industrial
automation systems. IoT technology in logistics is used to
ensure quality of shipment conditions (monitoring of vi-
brations, strokes, container openings or cold chain main-
tenance for insurance purposes), item location (search
of individual items in large areas like warehouses or har-
bors), storage incompatibility detection (warning emis-
sion on containers storing inflammable goods closed to
others containing explosive material) and fleet tracking
(control of routes followed for delicate goods like medical
drugs, jewels or dangerous merchandises) [1].

IoT paradigm emerged due to convergence of various
technologies approximately as of 2013, even though it has
been in some its aspects discussed for decades and has
been a topic of science fiction even longer than that.

At the end of 2014 there were 3,75 billion such devices
already in use, and predictions state that at the end of 2015
there will be 4,88 billion [2] devices deployed globally, and
corporations will spend more than 40 billion US$ for devel-
opment of IoT solutions [3]. It was anticipated mid-2013
that 26 billion such devices will be connected to the Internet
by 2020 [4]. Cisco and DHL have revised this number in
July 2015 to 50 billion by 2020 [5]. Some analysts set these
numbers at around 30 billion [6]. IoT devices are expected
to exhibit similar exponential growth in consumer and busi-
ness sectors. Cisco Systems expect the IoT market to reach a
staggering value of 19 trillion US$ [7].

The convergence of various technologies will raise
numerous questions, and industries logistics sector will
certainly not be left out of the development. These ques-
tions can be divided in several categories that need to be
addressed, among them the most important being infor-
mation security, design, sustainability and environmental
impact and privacy, autonomy and control.

In our research we have decided to tackle the following
early stage IoT problems in logistics companies’ IT envi-
ronment and address some of the issues raised above by:

171S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

1. Creating a theoretical testbed IoT platform to be
used specifically in logistics companies’ research,

2. Creating a working prototype of the physical plat-
form’s application based on the testbed (in our case a
sensor system to control overall environment), while
respecting all prudential measures and best practices
related to ICT security,

3. Deploying the prototype in Windows domain, as
opposed to separating it outside the domain, but at
the same time, implementing all information security
rules imposed on devices connected to the domain.
The reasoning for this is that in transitory period and
while cross-industry standard is defined, there might
be a need to join IoT devices to logistics companies’
domains and IT function should have both skills and a
standard set of practices available at hand how to man-
age them. Development related to deployment of logis-
tics environmental awareness system inside corporate
Windows domain will be a subject of further research.
We were led in our research by the following principles

that are in line with expert panels’ concerns explained
above:
1. Compliance with best practice information security

standards,
2. Implementation of industry’s best practices using

currently available protocols,
3. 3-way sustainability approach:

a) to use the electronic components with the lowest
disposal footprint possible,

b) to use implementation practices that achieve the
largest financial and CO2 savings,

c) to use the least number of the cheapest components
possible,

4. Open source design: to facilitate overview of the code
and discussion.
By April 2015, a testbed solution for usage of Internet

of Things (IoT) platform inside Windows domain has been
created. Working title of the platform is MIoT – Modular
Internet of Things, thus achieving the primary research
goal.

Besides the test bed solution, sensor electronics pack-
age prototype has been created along with 3-tiered pro-
gram code, software support needed for data acquisition,
storage, interpretation and visualization. Working name of
the package is LEAS – Logistics Environment Awareness
System.

However, the motivation for creation of both platforms
was not purely technical, so it was decided early on in the
project to evaluate technology in terms of overall financial
and business impact. Schematic representation of inter-
operation of both systems and their main components is
shown in the following figure.

Test bed and prototype were created bearing in mind
the possibilities of further development and integration.
They have been deployed in real-time environmental mon-
itoring of a server room location supporting logistics chain
activities of a multinational corporation in the period be-
tween April and November 2015 and have proven to be
very stable in operation.

Figure 1 Schematic representation of MIoT and LEAS

172 S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

2 Platform architecture description

MIoT/LEAS are:
1. Pioneer attempts to open the discussion about Internet

of Things paradigm in the logistics companies,
2. Complete mini-computing solutions for further re-

search and implementation,
3. A study in principles of Internet security, integration

and sustainability of IoT devices in existing corporate
Windows networks, and

4. Projects in progress used to learn and gather new
experience.
MIoT/LEAS are not:

1. Definitive answers to challenges presented by near-fu-
ture adoption of Internet of Things,

2. Attempts to define a way how to handle Internet of
Things devices used in the logistics company out-
side of perimeter of logistics companies’ networks or
domains,

3. Suggestions for new developments in proprietary elec-
tronics used for industrial control.

2.1 Hardware

During initial investigation, several existing mini-
computing platforms were considered, among them
Beaglebone, BananaPi and Raspberry PI [8] platform (RPI
in the text). Due to popular support, number of available re-
sources and open code, it has been decided to proceed with
detailed investigation of the feasibility of utilization of RPI.
RPI is a credit-card sized full-capability mini-computing
platform along with microcontroller able to control sensors
and other external electronic circuits. Any model of RPI is
able to run MIoT and LEAS, while we have used RPI B+ [9].

Led by principles of three-stage sustainability ap-
proach described in the Introduction, a basic set of hard-
ware was obtained and a mini computer was assembled
by simple addition of the heat sinks and electronics board
in transparent acrylic enclosure.

USB 2.0 ports may serve any purpose or communi-
cate with attached devices compliant with the standard.
Successfully tested, but not used in the project were USB
flash (pen) drives, USB hard drives, Bluetooth dongles and
Wi-Fi dongles. Network connectivity was achieved by us-
ing standard Ethernet port and 10/100 cable connected to
the corporate network. To use devices with higher power
requirements, external power source via powered hub
connection has to be provided. RPI can be powered from
a simple USB high quality mobile phone charger rated at
1A or more, or from a USB powered port of another USB
device. Both options were successfully tested.

Early on in the project, for portability, simplicity and
security purposes it has been decided to run the RPI in
a “headless” state [10], without physical monitor, key-
board or mouse and rely instead on remote connectivity.
However, physical connectivity was tested and it works via

HDMI connector or HDMI-DVI converter, and using stand-
ard USB keyboard and mouse over onboard USB ports.

2.2 Software

RPI uses mini or micro SD card for file system stor-
age and the operating system. The first challenge was to
find an adequate operating system to run RPI. Several
candidates were evaluated, among them ARM Arch Linux,
RaspBMC, RiscOS and Raspbian. Finally, Rasberry PI foun-
dation’s Raspbian operating system [11], contained on
NOOBS distribution [12] was selected as the most viable
candidate, and the selection proved to be adequate as
the implementation was completed using that particular
distribution.

Raspbian is foundation’s fork of Debian Linux operat-
ing system, specially prepared for use with ARM proces-
sor contained in RPI. This particular operating system is
known to be pre-delivered as hardened in terms of basic
rules of security. The only port left open for external con-
nection is port 22 used for secure SSH connections. Usage
of this particular operating system provided researchers
with a great deal of flexibility in additional hardening of
the device for outside connections.

It has been decided early on in the project to provide
two connectivity possibilities to access RPI:
1. Using SSH over direct serial connection (requires

physical access to device) or over the network, and
2. GUI (Graphical User Interface); for this particular

purpose, Raspbian LXDE [13] Desktop was selected
and installed.
Terminal services are used to connect to RPI’s

Graphical User Interface (GUI), namely, a lite terminal
server is installed on the RPI in form of TightVNC terminal
services. In order to toughen the connection as it is not se-
cure in its initial state, initial SSH tunnel is initiated from
the side of the RPI towards the client terminal machine.

After that, the connection is established by using the
local host from the other side. This way, no unencrypted
traffic flows between RPI server and connecting client.
All management and connections are successfully tested
between standard PC workstations running Windows op-
erating systems inside Windows domain. Furthermore,
there is a possibility to control RPI using encrypted ter-
minal services (for example, TeamViewer) from mobile
phones or a workstation inside Windows domain.

After successful remote control of the RPI, several meth-
ods for data exchange were tested and found to be fully
functional, including CIFS protocol, Samba server, box.com
cloud sharing and copying files to and from FAT32, NTFS or
ext(x) using externally attached USB media.

Further to this, Apache, MySQL database and PHP serv-
ers (LAMP stack [14]) were also installed and were able
to smoothly and concurrently run on the RPI, and Webmin
GUI for system and server administration.

Modified Java 8 was successfully tested and was used
on RPI. Another successfully tested but disabled (unused

173S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

functionality in the final setup of MIoT) relying on Java
was cloud backup service from Code42 company called
CrashPlan [15]. Bit Torrent Sync private cloud was also
successfully tested (not to be confused with public Bit
Torrent file sharing). Streaming packages mpd and mpc
[16] were also used and tested (for example, for local
Internet audio or radio streaming).

Further possibility of secure connection implementa-
tion consists of OpenVPN solution that was successfully
ported to RPI. Finally, an attempt was performed to join
RPI device to a Windows domain, and it was successful.
This was achieved by using Kerberos 5 [17] and WINBIND
Linux packages, so users logging on either remotely or lo-
cally to RPI need to have Windows domain account in or-
der to access the MIoT device. These two facts present a
major achievement because in this scenario:
1. It is possible to obtain automatic recognition of an

IoT device on which domain administrators can im-
pose a set of rules set by Microsoft’s global policies,
and

2. It is possible to obtain audit logs both on the device
and the user actions.
The same is also relevant for remote connections, users

using GUI and logging on remotely have to use Windows
domain logon accounts in order to access the RPI device.

Exhaustive list of packages installed and tested on the
RPI is quite long, so only the most important packages will
be mentioned in the following list:
1. System, configuration and GUI preference tools
2. System utilities

 – Image Viewer,
 – TightVNC (Terminal services),
 – Leafpad (similar to notepad),
 – Xarchiver (archived file manipulator, similar to Win-

Zip),
 – File manager,
 – Task manager, and
 – WinSCP (FTP client for RPI)

3. Office and productivity tools
 – Document viewer,
 – xpdf (PDF viewer), and
 – Epiphany Web Browser (able to run HTML 5 code,

Youtube videos etc.)
4. Programming languages (both used in the research):

 – Python, and
 – C.

A complex application package used for environment
monitoring via camera and/or microphone system called
motion [18] was installed, tested and deployed on RPI.
This application is highly configurable and used to moni-
tor environment for motion and changes, take continuous
or intermittent snapshots, detect movement according
to preset criteria and create stills, shockwave animations

or movies, offload them to a specific storage location, use
multiple sources (cameras) and trigger certain actions.
The system functions both in night and day conditions.

Local password policy is forced via PAM password
policy while changes for the local password are enforced
every 90 days, with the following parameters set through
pam_cracklib.so.

Windows domain group for device management has
been set, and only users from that group can log on to the
device, further disabling unauthorized access to the MIoT
platform. Login is currently allowed only to members of
the domain group SID, namely SMH_G_RPI_login, by using
pam_winbind.so.

Distribution and packages are maintained by Raspberry
Pi Foundation and MIoT’s operating system and depend-
encies can be upgraded either manually by using Internet
connection, or they can be enforced using operating system
and automatic updates patching by installed unattended-
upgrades Debian package allowing for flexible silent back-
ground updating of the device itself.

All installed connection capabilities that are currently
not in use are disabled by default, further strengthening
the connection security of the platform.

Backup of the file system is achieved by using freeware
tools Win32DiskImager and DiskInternals Linux Reader
[19] on Windows workstations by reading or writing en-
tire file system from SD card to and from a flat backup file.
Final result is a hardened mini-computer device, integrat-
ed and controlled inside Windows domain and used by au-
thenticated users having access to a viable and auditable
Windows logon account. This is a best practice scenario
usually encountered in logistics chain companies.

3 LEAS sensor package description

LEAS system may be used in any weather-proof space
to gather information about the environment, store and
alert about occurring events in the logistics process. With
further weatherproofing of the casing design, the sys-
tem may even be mounted externally or aboard vessels.
Implementations based on MIoT platform (and especially
sensory packages connected to it) should not be used for
critical implementations with potential impact on mate-
rial processes or personnel. Used sensors are entry-level
and should be carefully calibrated and adjusted accord-
ing to atmosphere requirements and applicable technical
guidelines.

Deployed software code should be carefully evaluated.
Limits related to its use and effects and functioning of
MIoT platform should be taken into consideration prior to
deployment.

3.1 Hardware

Goal of the LEAS prototype was to create an elec-
tronics sensor package controlled by program code run
on MIoT platform described in the previous paragraph.

174 S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

Components were carefully selected to be tough and reli-
able and the final choice was Sunfounder sensor kit [20].
To achieve speed of testing and assembly, two parallel
stacked breadboards were used.

Considering that full environmental friendliness was
one of the goals, there was no soldering, and no acids or
other chemicals were used in preparation of final elec-
tronic circuitry. All elements are secured in place by using
metal M2 and M3 Philips screws, nuts and bolts.

The circuits are communicating with MIoT using flat
40-pin data cable. Breadboards contain four power rails,
two in each half of the breadboard motherboard. Three
power rails from left side are powered with 3.3V while
rightmost one is powered with 5V. Reason for this is the
fact that some sensors require 3.3 V while some require 5
V. All ground rails are properly grounded. Color coding for
wires is followed so all red wires carry electric current, all
gray, dark or black wires are ground and other colors are
signal wires. During testing, all rails had LED power indi-
cators, while in the final assembly four LEDs and four re-
sistors were removed, further simplifying the design.

There was a total of seven sensors used in the circuitry.
Furthermore, there were three more elements used for
auditory and visual warning. The list of used components
and alerts is the following.
1. Shock sensor KY-031: detects movement of the LEAS

package in any direction,
2. Temperature/humidity sensor KY-015: measures

temperature and relative humidity,
3. Flame sensor KY-026: detects spark or flame by

wavelength,

4. Gas sensor MQ-2: SnO2 industrial sensor that detects
flammable gas, smoke, LPG, propane, butane, methane
and H2,

5. Photo sensor AVR PIC: detects changes in illumination
level,

6. Sound sensor KY-037: detects sudden change in
noises,

7. FC-28 Soil Humidity Detection Sensor Module: se-
lective A/D sensor that can be used to detect humidity
in material, in this case used to detect water leak,

8. Active buzzer KY-012: used to announce auditory sig-
nal during increased levels of flammable gas,

9. Red-yellow LED KY-011:
 – red LED: visual alarm for fire alarm, and
 – yellow LED: visual alarm for movement detection.

Addressing of the header pins of the MIoT microcon-
troller in the program code was done in alignment with the
library used to control pins, WiringPI. Ordinal header pins,
functions (names) and BCM GPIO nomenclature is not in
line with WiringPI. It is also possible to address separate
pins, read and write them using GPIO library installed on
the operating system, and not only by programming code
in C using WiringPI library [21]. Main header pin layout
conforms to the specification of the RPI B+ board.

Sensors that use interrupts in assembled circuitry are
flame, shock, water and sound sensors. Other sensors are
working in continuous loop reading mode. Readings of
such sensors are put on hold while reading of the sensor
triggering interrupt is in progress. Photo, sound and gas

Figure 2 LEAS electronic circuit board layout

175S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

sensors provide analog output while other sensors are
digital. Water (soil humidity sensor) can be used both in
digital and analog modes, but to avoid further wiring to-
wards analog to digital converter, analog mode was se-
lected for this particular sensor. Analog sensors require
analog to digital converter chips in order to convert the
signal to readable state. For this purpose, two ADC 08032
[22] chips were used. One chip is addressing one single
sensor and the other channel is idle, while the other chip
is addressing two sensors. Initially, there was one ADC per
chip, but using this configuration enabled further simplifi-
cation of the circuitry be removal of one chip and a bundle
of jump wires.

Power consumption of the working board (for both
MIoT and LEAS) is estimated at around 2 W [23]. The en-
tire circuitry schematic diagram is shown in Figure 2.

Sensors’ and ADC’s input and output pins are con-
trolled by cobbler board attached to the left breadboard.
Cobbler board also provides electric power for the circuit-
ry without requirements for external power source, add-
ing to the simplification of the design.

One or more USB cameras (v1.1 or higher) can be at-
tached to MIoT or a powered hub to gather environment
motion and/or sound input. In test configuration, an af-
fordable USB camera was adjusted in a way that infrared
filter was removed so the camera may be used in daylight
and night conditions under additional infrared illumina-
tion that is not visible to human eye. Current camera views
can be accessed from MIoT minicomputer using Internet
browser or from any computer on the same network seg-
ment, as the view itself is safely published using Apache
web server [24].

3.2 Software

Software running on MIoT device used to control LEAS
package consists of three modules: sensor control en-
gine, database layer and visualization layer. Sensor
control engine is used to gather data from the sensors,
process alerts and write data to databases, database layer
stores and serves data while visualization layer is used to
visually inspect and interpret data. Selection of layers is
similar to the usual best practice for division of IoT layers
to 3-tiered division of perception, network and applica-
tion. [25]

All software is written and compiled using RPI itself
and installed native Python and C packages.

3.2.1 Sensor control engine – tier 1

Sensor control engine is written in programming lan-
guage C and consists of 663 lines of code and uses various
external libraries, among them the most significant one
being open source WiringPI library used to control I/O
pins of the MIoT microcontroller. Sensor control engine
can run concurrently with visualization layer. The engine
initially loads configuration file (plain text file) that de-

fines main behavior of the program. Odd lines are treated
as comment lines and even lines are entry values.

Explanation of the used initialization parameters is the
following:
1. Mathplotlib [26] redraw time is a parameter shared

with visualization layer described in more details in
3.2.3, and it defines time between updates of the screen
with new data,

2. Mail TO filed is email address of the first alarm
recipient,

3. Mail CC field is email address of the second alarm
recipient,

4. Temperature Min and Max are trigger thresholds for
low and high ends of allowed temperature,

5. Gas sensor threshold defines sensitivity of the gas
sensor. Gas sensor is polled for new information every
second,

6. Interrupt write delay sec defines delay time for sen-
sors that use processor interrupt when triggered,
namely flame, shock and sound sensors. During delay,
writing of the new data is disabled,

7. Mailing delay in seconds is a delay between occur-
rences of sending alert email for the event. For exam-
ple, in case that there is fire alert, an email is being
sent out, but if the alert continues, emails are not sent
anymore for a period of time defined in mailing de-
lay parameter of the configuration file. Other types of
alerts that are sent by email during that period are not
suspended,

8. Delay for temperature, humidity and illumination
reading in sec is a delay between readings for temper-
ature, humidity and illumination.

Sensor readings are performed in a loop, once per
second, and readings are recorded in a database and dis-
played in a terminal window according to logic taken from
the configuration file. Log data related to email sending
(SMTP activity) is shown in the terminal window, but not
recorded in database.

If an alarm state is detected, indicating that tempera-
ture fell below or rose above set levels, flammable gas is
detected or there was a knock, sudden change in sound
level, water, spark or fire detection, an email is being sent
to predefined email addresses with time and type of the
event.

Concurrently, a motion daemon is run and single or
multiple cameras connected to LEAS are gathering sur-
rounding environment’s information. The system is highly
configurable and all possibilities of configuration will not
be in details described in this paper. All detected motion
in form of still pictures or video recordings, along with
timestamp can be recorded on a local or remotely con-
nected media and various triggers can occur depending on
desired behavior.

Motion daemon can be configured to store only images
when motion is detected or continuously, sensitivity level

176 S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

can be set and picture can be divided into 9 equal seg-
ments and motion detection can be focused only on one of
them or overall scene and according to pre-set percentage
of pixel change. Images or automatically created Flash or
video clip files can be saved to file system for later view-
ing. Current view of the camera(s) can be accessed over
the network using regular Internet browser by accessing
MIoT’s IP address.

Motion function was also tested under night conditions
and infrared illumination. Infrared light source was a small
3-LED light powered by 4.5V battery that was converted
by soldering infrared LEDs instead of OEMs. Regular we-
bcam was altered in a way that infrared filter screen was
removed from the housing, turning webcam into a night
vision device. Scene motion was successfully detected and
results were satisfactory in complete darkness.

3.2.2 Database layer – tier 2

For simplicity, daily captured sensor data is stored in
flat text files database that consists of three files using the
following naming convention format:
1. <year><month><day>_A_A.txt – contains alarms acti-

vated by external events: fire, sparks, shock, gas leak-
age, sudden loud change in sound level and water
detection. Events are stored in a way to contain date,
time, type of event and measured level of event (if ap-
plicable). For example:

 2015-03-09 00:00:01 CEST; GAS detected, current lev-
el: 58

 2015-03-09 12:23:29 CEST; Sound Sensor ACTIVATED:
140

 2015-03-09 10:49:33 CEST; Knock detected!
 2015-04-21 11:52:00 CEST; Water detected!

2. <year><month><day>_H.txt – contains stored readings
of external temperature and humidity, date and time of
reading. For example:

 2015-03-09 00:00:02 CET: Humidity = 35.0 %
 Temperature = 22.0 *C (71.6 *F)
3. <year><month><day>_I.txt –contains date, time and

level of illumination reading. For example:
 2015-03-09 10:48:14 CET: Current illumination: 87

Every day at midnight, a new set of three files is open
and used to store new data while old sets of database files
are maintained on a file system. Number of daily events
kept in the database depends only on free space of the me-
dia. The system generates up to 600 kb of measured data
per day, so monthly it requires around 18 MB of storage.
Log database rotation is achieved using Linux cron job (an
alternative would be using configurable settings inside
Webmin [27]) and can be set according to own prefer-
ences. Linux cron job is run to prune all database entries
older than 30 days.

3.2.3 Visualization layer – tier 3

Visualization layer is written in programming language
Python [28] and consists of 344 lines of code, uses vari-
ous libraries, and among them the most prominent being
open source library for chart representation Matplotlib.
Visualization layer is automatically drawing data for the
current day after running the application and enables
scrolling between days. Taking into consideration the
relatively low raw processor power of the MIoT test bed
platform and number of readings (plot points), it can take
several minutes to render one entire day worth of events.
Setting up less dense readings using configuration file will

Figure 3 Live webcam view of motion daemon (max. camera resolution 720p – 1280×720 pixel)

177S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

speed up rendering time. The same is valid also for ren-
dering data of the previous or next days.

In the plot area, there are three charts representing
temperature, humidity and illumination throughout the
day and four box areas below them showing last eight
alarms related to shocks (knocks), fire or sparks, sudden
elevation in sound levels, detection of hazardous gasses
and water detection.

Graphical representation of LEAS visualization layer is
shown in the Figure 4.

Control over MIoT and LEAS is possible also using
smartphone’s GUI and functionalities, as shown in Figure 5.

As already mentioned in Introduction, access to LEAS
GUI is also possible by using any smartphone capable to
run terminal services and open access to the client from

which secure connection is established towards MIoT
platform.

LEAS visualization GUI contains some basic functions
like navigation between days using left and right arrows,
option to jump to data representing current day, “About”
section and button used to exit from the GUI back to the
operating system and LXDE desktop GUI.

4 Conclusion

On a macro level, the project is a result of recognition
of an emerging trend, Internet of Things, which will be a
hot topic in the next decade. Logistics companies have yet
to align their practices with this new emerging trend and
define a set of applicable rules for management of such

Figure 4 LEAS GUI (Graphical User Interface)

Figure 5 Smartphone visualization of LEAS

178 S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

devices. With this step we wanted also to underline im-
portance of this new technology paradigm inside logistics
companies and enhance internal discussion on the topic.

On a micro level, we wanted to show possible appli-
cations and calculate some measurable savings related
to just one such application. Real savings depend on per-
fusion of the platform’s implementation in business re-
alities of logistics companies. Opportunities are numerous
and will be dictated by the perfusion of technology in the
near future.

For the first part of our application, testbed IoT plat-
form named MiOT, there was no traditional, previously
used approach. Internet of Things is a completely new par-
adigm of interconnected computing devices. Currently, IoT
is not a platform in widespread usage and it might have
certain components scattered across industrial electronics
solutions used in operations of the logistics companies and
managed in a proprietary way or by implementing best
practices for industry control electronics applications.

In the second part of our application, we have created a
sensory package for logistics purposes, while a traditional
approach would be the purchase and maintenance of pro-
prietary package from the manufacturers, with pre-set
number of sensors and functionalities. Annual cost of main-
tenance carries approximately 16 % of the investment cost
in the traditional approach scenario. The packages are in-
stalled “as-is”, with no possibility to intervene in the code,
add functionalities or change them. On the positive side,
such industrial solutions are reliable, made of high quality
components, certified and easily replaceable in case of mal-
function but expensive to purchase and maintain.

Industrial electronics are habitually segregated from
logistics companies’ business networks. We expect that
miniaturization and developments in IoT segment will
gradually change this design in the near future. With the
creation of MiOT testbed, we have attempted a pioneer ap-
proach to create a platform that may be joined to a domain
under the same set of rules applicable to user-assigned
workstations and allow for secure and flexible computing.
This platform is able to fill various server roles and be a
microcontroller, something that currently requests heavy
physical or virtual computing facilities and proprietary
microcontroller packages.

Further to this, we wanted to create not only a testbed,
but also a working prototype of a sensory package - LEAS
- for use in environmental monitoring of logistics compa-
nies’ operations, controlled by MiOT testbed. This particu-
lar package costs only a fraction of commercially available
proprietary environment sensing equipment and due to
extremely low electricity consumption leaves negligible
financial and CO2 footprint during operations, while pro-
viding all necessary functionalities, email alerts, database
event logging and graphical representation of data.

The actual benefit of MiOT testbed platform is the crea-
tion of an open source Linux OS image that can be used
on Raspberry PI computing platform by anybody in logis-
tics companies willing to learn, deploy or use Internet of
Things solutions inside their networks in an efficient and

sustainable way, until or in parallel with the time when the
standard for management of IoT devices inside logistics
companies is clearly defined.

The actual benefit of LEAS sensor package is the
achieved compliance with a number of provisions of the
best practices and information security policies in logistics
companies, but also integral security as the sensor pack-
age is able to capture and monitor almost all environment
information and can be further expanded in numerous
ways by adding sensors.. Furthermore, LEAS is a comple-
ment to MiOT, where it has been proven that a useful pack-
age can be implemented in Windows domains in a safe
and efficient manner by respecting all existing information
security rules and practices.

In terms of social sustainability, special care was taken
to use open source programs and to set the program code
in a way to be able to release it as an open source code.
Furthermore, by creating a testbed platform for IoT in the
initial phase of the project, we have envisaged the possi-
bility to further develop and disseminate knowledge and
develop capabilities of IT personnel and electrical engi-
neers that will be involved in implementation of logistic
IoT platforms in the future.

References

 [1] Vermesan, O., Friess, P., Internet of Things: Converging
Technologies for Smart Environments and Integrated Eco-
systems, River Publishers, Aalborg, Denmark, p. 34.

 [2] Velosa, A, Schulte W.R, Lheureux B.J., Hype Cycle for the
Internet of Things, Gartner, August 2014, https://www.
gartner.com/doc/3098434 [18.08.2015]

 [3] Executive Summary Report, 2014 Conference Theme: Driv-
ing Digital Business, Gartner Symposium ITxpo 2014, 5-9
October 2014, Orlando, Florida, http://www.gartner.com/
binaries/content/assets/events/keywords/symposium/
sym25/gartner-sym24-executive-report2.pdf [18-08-2015]

 [4] Gartner Says the Internet of Things Installed Base Will
Grow to 26 Billion Units By 2020, Press Release, Gartner,
STAMFORD, Conn., December 12, 2013, http://www.
gartner.com/newsroom/id/2636073 [18-08-2015]

 [5] Macaulay J., Buckalew L., Chung, G., Internet of Things in Lo-
gistics – A collaborative report by DHL and Cisco on impli-
cations and use cases for the logistics industry, DHL Trend
Research – Cisco Computing Services, p.5, [29-06-2015]

 [6] Internet of Everything, ABIresearch, https://www.abire-
search.com/market-research/service/internet-of-every-
thing/ [accessed 18-08-2015]

 [7] Cisco CEO pegs Internet of Things as $19 trillion market,
International Consumer Electronics Show, Las Vegas, 07th
January 2014., http://www.bloomberg.com/news/arti-
cles/2014-01-08/cisco-ceo-pegs-internet-of-things-as-19-
trillion-market [18-08-2015]

 [8] Exploring Beaglebone – Companion Site for the Book by
Derek Molloy (http://exploringbeaglebone.com), „Banana
Pi – A Highend Single-Board Computer“ (http://www.ba-
nanapi.org), Raspberry Pi Foundation https://www.rasp-
berrypi.org [19th August 2015]

 [9] https://www.raspberrypi.org/products/model-b-plus/
[19th August 2015]

179S. Aksentijević et al. / Scientific Journal of Maritime Research 29 (2015) 170-179

 [10] Munsell, A., Setting up the Raspberry Pi as a Headless Device,
https://www.andrewmunsell.com/blog/setting-up-raspber-
ry-pi-as-headless-device/ [19th August 2015]

 [11] Raspbian, https://www.raspbian.org [19th August 2015]
 [12] NOOBS Archives – Raspberry Pi, https://www.raspberrypi.

org/blog/tag/noobs/ [19th August 2015]
 [13] LXDE.org | Lightweight X11 Desktop Environment, http://

lxde.org [19th August 2015]
 [14] LAMP Stack – Web Stack (MySQL), https://www.turnkey-

linux.org/lampstack [19th August 2015]
 [15] Online Data Backup – Offsite, Onsite & Cloud – Crashplan

Backup Cloud”, http://www.code42.com/crashplan/ [19th
August 2015]

 [16] mpc – Music Player Daemon, http://www.musicpd.org/cli-
ents/mpc/ [19th August 2015]

 [17] Ricciardi, F., The Kerberos protocol and its implementations,
INFN – the National Institute of Nuclear Physics Computing
and Network Services, Lecce, Italy, 26th November 2006, p. 4.

 [18] Motion – Web Home, http://www.lavrsen.dk/foswiki/bin/
view/Motion [19th August 2015]

 [19] Freeware Linux Reader for Windows, http://www.diskin-
ternals.com/linux-reader/ [19th August 2015]

 [20] Sunfounder, http://www.sunfounder.com [19th August 2015]
 [21] Wiring Pi – GPIO Interface library for the Raspberry Pi,

http://wiringpi.com [19th August 2015]
 [22] ADC08032, Texas Instruments, http://www.ti.com/product/

adc08032 [19th August 2015]
 [23] http://raspberrypi.stackexchange.com/questions/5033/

how-much-energy-does-the-raspberry-pi-consume-in-a-
day [19th August 2015]

 [24] Apache http server project, http://httpd.apache.org [19th
August 2015]

 [25] Song, X., Huang L., Fenz, S., Internet of Things Applica-
tions in Bulk Shipping Logistics: Problems and Potential
Solutions, Communications in Computer and Information
Science Volume 312, 2012, p. 566.

 [26] matplotlib, http://matplotlib.org [19th August 2015]
 [27] Webmin, http://www.webmin.com [19th August 2015]
 [28] Welcome to Python.org, https://www.python.org [19th August

2015]

